Произведение «Вездесущ Разум Космоса» (страница 2 из 6)
Тип: Произведение
Раздел: Эссе и статьи
Тематика: Публицистика
Автор:
Читатели: 191 +14
Дата:

Вездесущ Разум Космоса

хотя обычно энергия космических лучей находится в диапазоне от 10 МэВ до 10 ГэВ. До недавних пор тройку лидеров по энергии дополняли частица с энергией 2,80Л020 эВ, зарегистрированная в 2001 году (N. Sakaki et al., 2001. Cosmic ray energy spectrum above 3 x 1018 eV observed with AGASA), и частица с энергией 2,13-1020 эВ, зарегистрированная в 1993 году (N. Hayashida et al., 1994. Observation of a Very Energetic Cosmic Ray Well Beyond the Predicted 2.7K Cutoff in the Primary Energy Spectrum).
Частица 1991 года была «поймана» с помощью флуоресцентных детекторов, а вот частицы 1993-го и 2001 годов — уже с помощью массивов поверхностных детекторов. Все они находились в Северном полушарии. Поиск в Южном полушарии пока не дал частиц с энергией больше 1,66-1020 эВ (P. Abreu et al., 2022. Arrival Directions of Cosmic Rays above 32 EeV from Phase One of the Pierre Auger Observatory).
Большая редкость космических лучей предельно высоких энергий объясняется тем, что их источники не могут располагаться на расстояниях свыше 50-100 мегапарсек от Земли. Долетать, не теряя энергию, с более дальних дистанций им мешает так называемый эффект Грайзена — Зацепина — Кузьмина (ГЗК): в результате взаимодействия с фотонами космического микроволнового фона частицы с энергией выше 5-1019 эВ не могут без серьезных потерь пройти через межгалактическую среду — они порождают пионы, пока их энергия не упадет ниже указанного порога. Это предельное значение энергии было вычислено в 1966 году Георгием Тимофеевичем Зацепиным и Вадимом Алексеевичем Кузьминым и, независимо от них, американским физиком Кеннетом Грайзеном. Г. Т. Зацепин (1917-2010) и В. А. Кузьмин (1937-2015) работали в Институте ядерных исследований АН СССР с момента его основания в 1970 году.
Когда частицы, обладающие очень высокой энергией, попадают в земную атмосферу и сталкиваются с ядрами атомов (в основном — азота и кислорода), из которых состоит воздух, они порождают огромное количество вторичных частиц, в свою очередь также взаимодействующих с атмосферой и становящихся источниками дальнейших каскадов распадов пионов, каонов, мюонов и электронов. Это явление называют широким атмосферным ливнем (ШАЛ, подробнее см. Космические дожди). В ходе такого «ливня» первоначальная частица может породить до 10 млрд вторичных частиц, высыпающихся на земную поверхность и накрывающих площадь до десятка квадратных километров. Эти вторичные частицы почти одновременно регистрируются детекторами, которые расположены на обширной площади с интервалами в сотни метров и даже в километры. Используя информацию о небольшой разнице по времени между моментами регистрации разных частиц (порядка микросекунды), ученые оценивают направление прихода (фронт ливня) и энергию первичной частицы (по обширности ШАЛ и числу зарегистрированных частиц на уровне земли).

Установка международной коллаборации Telescope Array, которая стала наследницей вышеупомянутого детектора космических лучей «Глаз мухи» в штате Юта и зарегистрировала в том числе и обсуждаемое событие 27 мая 2021 года, представляет собой решетку из полутысячи поверхностных детекторов (каждый площадью 3 м2), расставленных с интервалом 1,2 км и охватывающих участок в 700 км2. В дополнение к ним имеются также флуоресцентные детекторы, чувствительные к черенковскому излучению, порождаемому заряженными частицами атмосферного ливня, движущимися со скоростями, превышающими фазовую скорость света в воздушной среде. Эта установка уже свыше пятнадцати лет (начиная с 2008 года) занимается постоянным мониторингом космических лучей. Исследования, проводимые с помощью Telescope Array, позволили предположить ранее, что источник многих высокоэнергичных частиц находится в 20-градусной зоне в направлении на созвездие Большой Медведицы. Проект Telescope Array объединяет исследователей из США, Японии, Южной Кореи, Бельгии и России, представленной учеными из Института ядерных исследований РАН, которые сыграли решающую роль в физической интерпретации обнаруженной в 2021 году частицы. В последние годы ученые активно используют машинное обучение и нейронные сети, позволяющие распознавать характерные паттерны тех или иных событий.

27 мая 2021 года в 4 часа 35 минут 56 секунд по времени штата Юта (MST — так называемое горное время, эквивалентное UTC-7) на Telescope Array были получены сигналы взаимодействия с атмосферой космической частицы, энергия которой оценивается в 2,4Ф1020 электронвольт (244±29 эксаэлектронвольт, или ~40 джоулей — порядка кинетической энергии хоккейной шайбы, пущенной профессиональным спортсменом). Неофициально было предложено называть ее «частицей Аматэрасу» — в честь богини Солнца из японского синтоистского пантеона, поскольку зарегистрирована она была на рассвете.
Несмотря на то что наземные детекторы частиц располагаются на расстоянии свыше 1,2 км друг от друга, в общей сложности 23 детекторам удалось зарегистрировать эти сигналы с микросекундной разницей по времени. Такой результат указывает на то, что это был именно ШАЛ, порожденный одной-единственной частицей (или атомным ядром) чрезвычайно высокой энергии. По величине и временной разнице сигналов, обнаруженных каждым детектором, были рассчитаны направление и общая энергия ливня частиц.
После того, как событие с рекордной энергией было обнаружено, оно подверглось тщательному анализу российскими участниками проекта. Иван Харук, научный сотрудник Лаборатории обработки больших данных ИЯИ РАН, так говорит о работе, проведенной на первом этапе: «Сигнал со всех станций наземной решетки Детекторов Telescope Array был исслеДован с помощью метоДов машинного обучения: с высокой степенью Достоверности было установлено, что частица не может быть гамма-квантом (поскольку он Давал бы Другой виД ливня), и это не позволяет оДнозначно связать ее с каким-либо процессом в преДелах Стандартной моДели физики частиц». Результаты этого анализа пока допускают, что частица может быть как протоном, так и ядром атома химического элемента. На втором
этапе направление прихода частицы было соотнесено с трехмерной картой внегалактических объектов.

Рис. 4. Слева — схема расположения детекторов Telescope Array (каждая точка — один детектор). Цветными кружочками указаны детекторы, зарегистрировавшие вторичные частицы ШАЛ: размер кружочка показывает количество зарегистрированных частиц, цвет — задержку по времени (синий — раньше, красный — позже). Черной стрелкой показано направление ШАЛ в проекции на земную поверхность. Справа — данные с отдельных детекторов. По горизонтальной оси — задержка во времени регистрации сигнала (относительно первой детекции), по вертикальной оси — сила сигнала для каждого из детекторов. Рисунок из обсуждаемой статьи в Science
На рис. 5 показано направление прихода этой частицы на небесной сфере. Явно видно, что в том направлении нет какого-либо известного галактического или внегалактического объекта-кандидата, способного породить частицу с такой энергией (в крупномасштабной карте Вселенной там находится локальная пустота). До сих пор в качестве вероятных кандидатов на испускание космических лучей сверхвысоких энергий рассматривались два объекта. Первый — гигантская эллиптическая галактика M 87 с активным ядром в скоплении Девы (удалена от нас на 16,5 Мпк). Второй — активная галактика с интенсивным звездообразованием M 82 (удалена от нас на 3,5 Мпк). Однако обе они располагаются в направлениях, заведомо отличных от тех, что подошли бы в этом случае, и также не совпадают с направлением на избыток космических лучей в созвездии Большой Медведицы, о котором ранее свидетельствовали данные Telescope Array.

Рис. 5. Направление прихода частицы 2021 года (черный круг левее надписи PKS 1717+177) и потенциальные локальные источники космических лучей высоких энергий. Цветными кругами с названиями частиц/атомов показаны расчетные направления прихода этой частицы, будь она ядром соответствующего элемента или частицей (красный — протон, фиолетовый — углерод, зеленый — кремний, синий — железо). Расчеты проводились для двух моделей строения магнитного поля Галактики (JF2012 и PT2011). Цвет на шкале справа показывает ожидаемый поток частиц. Local void — Местный войд (относительно пустая область в крупномасштабной структуре Вселенной). Рисунок из обсуждаемой статьи в Science
Расчетное направление прихода частицы 27 мая 2021 года находится вблизи диска Млечного Пути, где галактическое магнитное поле достаточно сильно, чтобы заметно отклонить частицу даже с энергией 2,44-1020 эВ, особенно если это тяжелое ядро с большим электрическим зарядом. На рис. 5 показаны восемь возможных направлений прихода, которые были рассчитаны, исходя из разных моделей для четырех возможных типов первичных частиц (протон, ядро углерода, ядро кремния и ядро железа). Для определения направления прихода первичной частицы до ее попадания в Млечный Путь использовался метод обратного хода в системе распространения космических лучей (R. Alves Batista et al., 2016. CRPropa 3 — a public astrophysical simulation framework for propagating extraterrestrial ultra-high energy particles).
Полученные направления сравнивались с каталогом источников гамма-излучения. Так, в качестве одного из первоначальных кандидатов рассматривалась активная галактика PKS 1717+177, расположенная в пределах 2,5° от расчетного направления прихода первичной частицы. Однако расстояние от нас до этой галактики составляет около 600 Мпк (что соответствует красному смещению 0,137), а это уже слишком велико для распространения космических лучей ультравысоких энергий, попадающих на Землю: средняя дистанция распространения при энергии 2,44 4 020 эВ составляет ~30 Мпк для протонов и ядер железа. На рис. 5 также обозначены близлежащие активные галактические ядра, испускающие гамма-лучи, и галактики, которые были предложены в качестве возможных источников космического излучения. Выяснилось, что направление прихода частицы ведет в локальную пустоту — Местный войд — полость, простирающуюся между Местной группой галактик и близлежащими галактическими нитями-волокнами. В этой пустоте присутствуют немногочисленные галактики, ни одна из которых не может послужить предполагаемым местом ускорения космических лучей сверхвысоких энергий. Даже с учетом диапазона возможных отклонений первичной частицы и вариаций ее заряда не удается найти убедительных источников — кандидатов для этого события. Лишь в некоторых моделях и в предположении, что это весьма тяжелое ядро (железа), направление источника можно с трудом «притянуть» к той части крупномасштабной структуры, что населена галактиками. Это направление оказывается близко к спиральной галактике NGC 6946 (галактика Фейерверк), находящейся от нас на расстоянии 7,7 Мпк. Однако NGC 6946 в гамма-лучах не светится, поэтому вряд ли может оказаться мощным источником космических лучей ультравысоких энергий.
В принципе, можно уже попытаться оценить, с какого расстояния добиралась до нас частица 2021 года. Если предположить, что она представляет собой ядро железа, инжектированное с начальной энергией 1021 эВ, то с учетом потерь энергии в пути получится расстояние 10,3+5,3_з,о Мпк. В предположении, что это был протон, расстояние оценивается в 27,0+3,8_з,0 Мпк. Фон частиц от более далеких источников ослаблен энергетическими потерями, поэтому существенный вклад могут вносить лишь источники из локальной Вселенной. Таким образом,

Реклама
Обсуждение
Комментариев нет
Книга автора
Абдоминально 
 Автор: Олька Черных
Реклама